Health.Zone Web Search

  1. Ads

    related to: ordinary differential equation solver with steps

Search results

  1. Results from the Health.Zone Content Network
  2. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    Suppose that we want to solve the differential equation ′ = (,). The trapezoidal rule is given by the formula + = + ((,) + (+, +)), where = + is the step size. [1]This is an implicit method: the value + appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear.

  3. Partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Partial_differential_equation

    In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x 2 − 3x + 2 = 0.

  4. Korteweg–De Vries equation - Wikipedia

    en.wikipedia.org/wiki/Korteweg–De_Vries_equation

    Cnoidal wave solution to the Korteweg–De Vries equation, in terms of the square of the Jacobi elliptic function cn (and with value of the parameter m = 0.9). Numerical solution of the KdV equation u t + uu x + δ 2 u xxx = 0 (δ = 0.022) with an initial condition u(x, 0) = cos(πx).

  5. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    The analytical method of separation of variables for solving partial differential equations has also been generalized into a computational method of decomposition in invariant structures that can be used to solve systems of partial differential equations. [1]

  6. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    "New high-order Runge-Kutta formulas with step size control for systems of first and second-order differential equations". Zeitschrift für Angewandte Mathematik und Mechanik . 44 (S1): T17–T29.

  7. Adomian decomposition method - Wikipedia

    en.wikipedia.org/wiki/Adomian_decomposition_method

    The Adomian decomposition method (ADM) is a semi-analytical method for solving ordinary and partial nonlinear differential equations.The method was developed from the 1970s to the 1990s by George Adomian, chair of the Center for Applied Mathematics at the University of Georgia. [1]

  8. Backward Euler method - Wikipedia

    en.wikipedia.org/wiki/Backward_Euler_method

    The backward Euler method is an implicit method: the new approximation + appears on both sides of the equation, and thus the method needs to solve an algebraic equation for the unknown +. For non-stiff problems, this can be done with fixed-point iteration:

  9. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    A very large class of nonlinear equations can be solved analytically by using the Parker–Sochacki method. Since the Parker–Sochacki method involves an expansion of the original system of ordinary differential equations through auxiliary equations, it is not simply referred to as the power series method.

  1. Ads

    related to: ordinary differential equation solver with steps