Health.Zone Web Search

  1. Ad

    related to: 2nd order differential equations calculator

Search results

  1. Results from the Health.Zone Content Network
  2. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    e. In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown (s) consists of one (or more) function (s) and involves the derivatives of those functions. [1] The term "ordinary" is used in contrast with partial differential equations ...

  3. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...

  4. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.

  5. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who first proposed it in his book Institutionum calculi integralis (published 1768–1770). [1]

  6. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    Heun's method. In mathematics and computational science, Heun's method may refer to the improved[1] or modified Euler's method (that is, the explicit trapezoidal rule[2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial ...

  7. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    Runge–Kutta–Fehlberg method. In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods.

  8. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution is known and a second linearly independent solution is desired. The method also applies to n -th order equations. In this case the ansatz will yield an (n −1)-th order ...

  9. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep method. Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.

  1. Ad

    related to: 2nd order differential equations calculator