Health.Zone Web Search

Search results

  1. Results from the Health.Zone Content Network
  2. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Multistep methods use information from the previous steps to calculate the next value. In particular, a linear multistep method uses a linear combination of and to calculate the value of for the desired current step. Thus, a linear multistep method is a method of the form with . The coefficients and determine the method.

  3. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who first proposed it in his book Institutionum calculi integralis (published 1768–1770). [1]

  4. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    The same illustration for The midpoint method converges faster than the Euler method, as . Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to ...

  5. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown (s) consists of one (or more) function (s) and involves the derivatives of those functions. [1] The term "ordinary" is used in contrast with partial differential equations (PDEs ...

  6. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form + ′ + ″ + () = where a 0 (x), ..., a n (x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y (n) are the successive derivatives of an unknown function y of ...

  7. Fundamental matrix (linear differential equation) - Wikipedia

    en.wikipedia.org/wiki/Fundamental_matrix_(linear...

    Fundamental matrix (linear differential equation) is a matrix-valued function whose columns are linearly independent solutions of the system. [1] Then every solution to the system can be written as. , for some constant vector (written as a column vector of height n). A matrix-valued function is a fundamental matrix of if and only if and is a ...

  8. Backward differentiation formula - Wikipedia

    en.wikipedia.org/wiki/Backward_differentiation...

    The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.

  9. Stiff equation - Wikipedia

    en.wikipedia.org/wiki/Stiff_equation

    Stiff equation. In mathematics, a stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small. It has proven difficult to formulate a precise definition of stiffness, but the main idea is that the equation includes some terms ...